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Abstract 0 Peptide metabolic pathways in blood or other tissues
are often complex because multiple enzyme systems are involved in
the degradation of parent drug and its metabolites. Michaelis−Menten-
type studies with isolated enzymes have been frequently employed
for evaluating the metabolism of peptides. Alternatively, studies with
selective enzyme inhibitors or the evaluation of the area under the
drug− or metabolite−time profiles have been employed. We tested in
this study the usefulness of a multicompartmental pharmacokinetic
approach for the assessment of the apparent first-order metabolism
of dynorphin A1−13 up to the fourth metabolite generation in human
plasma. This multicompartmental kinetic analysis proved instrumental
in clarifying ambiguous degradation pathways not easily detectable
by the other methods of assessment (enzyme inhibition studies and
noncompartmental analysis) because of the lack of specific enzyme
inhibitors or specificity problems of the analytical technique employed.
The proposed multicompartmental fitting approach was also highly
suitable to verify the overall metabolic pathways suggested by the
other methods up to the fourth metabolite by testing whether the rate
constants obtained by these methods are suitable to describe the
overall degradation profile after Dyn A1−13 degradation. Local
sensitivity analysis for the degradation of DYNA 1−13 revealed that
the model was, however, not able to adequately identify on its own
all of the parameters involved in the degradation of dynorphin A1−
13. Thus, the method proved beneficial in evaluating and testing the
correctness of the overall degradation pathways suggested by other
methods.

Introduction
Biologically active peptides often exert their effects via

active metabolites. With the use of peptides as therapeutic
agents, a detailed understanding of their metabolism is
therefore important. The model peptide Dyn A1-13 used
in this study is extensively metabolized in plasma.1 N-
terminally intact metabolic fragments of Dyn A1-13 (Dyn
A1-12 through Dyn A1-5) retain opioid receptor affinity,2
while N-terminally truncated dynorphin derivatives such
as Dyn A2-13 modulate morphine tolerance via nonopioid
pathways, possibly the NMDA-receptor3,4 and/or melano-
cortin receptor.5

The in-vitro metabolic pathway of Dyn A1-13 in human
plasma is complex, as previously assessed up to the fourth
metabolic generation by enzyme inhibition studies and a

noncompartmental analysis of the metabolic pathway.1
Enzyme inhibition studies can only assess the contribution
of one enzymatic system to the overall metabolic fate of
the parent drug or identified metabolites; and they depend
on the specificity of the enzyme inhibitors involved. A
noncompartmental (AUC-based) approach introduced in
these studies1 compared the area under the concentration-
time profiles of a given metabolite during degradation of
the parent drug (e.g., Dyn A1-13) with the area observed
after direct degradation of the synthesized metabolite. This
approach allows simultaneously monitoring of several
metabolites and does not depend on the availability of
selective enzyme inhibitors but on the high selectivity of
the chromatographic system for the determination of
parent drug and metabolites. Because of the limitations
found for both methods, this study focuses on the ap-
plicability of a structured multicompartmental kinetic
analysis (nonlinear curve fitting procedures for apparent
first-order kinetic processes) for the analysis of complex
metabolic events. The results presented here suggest that
this mode of analysis has certain advantages over the above
methods and that it should be applied in conjunction with
the other methods to assess complex metabolic degradation
pathways of peptide drugs.

Materials and Methods

DatasConcentration-time profiles of parent compound (gener-
ally Dyn A1-13 or shorter fragments such Dyn A1-12 or Dyn
A2-12, Dyn A 3-12, Dyn A 4-12, Dyn A 1-10, Dyn A 2-13) and
resulting metabolites obtained after incubation of peptides at 37
°C in neat plasma in the presence or absence of specific enzyme
inhibitors (GEMSA, bestatin, captopril, leucinetiol) have been
previously described.1 These data were reanalyzed in this study.

Data AnalysissDifferential equations describing sequential
and parallel pathways of dynorphin metabolism (see Figures 1 and
2, for the metabolic pathways of Dyn A1-13 investigated, see
Figure 1 for final pathway) were established.6 These equations
incorporated the overall rate of degradation of a given peptide
(degradation rate constant of DynA1-13: k1; degradation rate of
metabolites: k2 - k7) and the rate of generation of metabolites
(k12, k16, k23, k63, k27...). See Figure 1 for explanation of the
abbreviations of rate constants used. The Laplace transform of
the concentration of a given dynorphin fragment (as,c) was
calculated as the product of the input (ins; here the initial amount
of peptide spiked into the incubation solution) and the following
modified disposition function (ds,c).7
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where ds,c is the disposition function for compartment 1 (it is a
function of s, the Laplace operator); ∏ is the continued product
where any term is defined as equal to 1 when the index takes a
forbidden value (that is, i ) 1 in the numerator or m ) j in the
denominator); ∑ is the continued sum where any term is defined
as equal to zero when the index takes a forbidden value; k1j is the
first-order generation of a metabolite, estimated from relevant
generation rate constant; ki, km is the overall degradation rate of
a dynorphin fragment, estimated from relevant degradation rate
constants; N is the number of the compartments.

The Anti-Laplace of as,c was obtained by the method of par-
tial fractions.7 The resulting equations for the final model of Dyn
A1-13 (C1) with its metabolites Dyn A1-12 (C2), Dyn A2-12
(C3), Dyn A3-12 (C4), Dyn A2-13 (C6), and Dyn A4-12 (C5)
coeluting with Dyn A1-10 (C7) are listed in Appendix 1. The
nonlinear curve fitting program Scientist (Micromath, Salt Lake
City, Utah) was used to fit the experimental data to the derived
equations.

The initial estimates of the degradation rate constants for the
parent compound and metabolites (but not generation rate con-
stants) were taken from the estimates obtained from direct
incubations of this fragment.1 Fitting parameters were not allowed
to differ from these initial estimates by more than 30% (the
maximum variability generally excepted), if not otherwise stated.
Initial estimates for the generation rate constant were based on
the initial estimates of the degradation rate constants under
enzyme inhibition (Table 1). Since some enzyme inhibitors lacked
selectivity, these generation rate constants were generally allowed
to vary in the curve fitting procedure between 10% and 130% from
the initial estimate of the overall rate constant of the relevant
metabolic step.

Goodness of fits were evaluated by r2 and the Model Selection
Criterion (MSC), a value based on the Akaike Information
Criterion.8 A local sensitivity analysis was carried out for each
of the Dyn derivatives along with some summary measures.9
The normalized sensitivity coefficient (SC) detailed by Bieniasz
and Speiser was calculated for each Dyn derivative (see Appen-
dix 2).10

Results and Discussion

Peptides are of importance as therapeutic agents. For a
detailed assessment of their therapeutic and clinical prop-
erties a detailed knowledge of the metabolic fate of a given
peptide is necessary. Approaches employing Michaelis-
Menten-type kinetics would depend on the detailed assess-
ment of enzyme kinetics11 of parent compound and me-
tabolites, as well as the identification and measurement
of all relevant (iso-) enzyme concentrations in the investi-
gated biological media. Using Dyn A1-13 as a model
compound, we have previously shown that the size of
metabolic pools of peptides can be efficiently evaluated over
several metabolic generations by noncompartmental analy-
sis (area under the concentration time profiles) and enzyme
inhibition studies with parent drug and synthesized me-
tabolites.1 Within this study, it was also shown that the
degradation of Dyn A1-13 and all its metabolites followed
apparent first-order kinetics, similar to results for other
peptide drugs.12 It was therefore of interest to test whether
a structured compartmental curve fitting approach is
helpful for the assessment of complex metabolic events
using Dyn A1-13 degradation as an example. Plasma was
chosen since it often represents a major metabolic site for
peptide drugs given intravenously.12 In the following, the
advantages and disadvantages of such a multicompart-
mental kinetic analysis are presented in three examples.

Example 1: Identification of the Metabolic Path-
ways of Peptide DegradationsThe following section
demonstrates some of the advantages of the multicompart-
mental modeling approach for the identification of meta-
bolic pathways. As shown in Figure 1, the metabolic fate
of Dyn A2-12, one of the main metabolites of Dyn A1-13,
produces Dyn A3-12 and Dyn A4-12. To investigate this
N-terminal metabolism in more detail, captopril was added
to the incubation solution to suppress the C-terminal
metabolism of Dyn A2-12 which is dominated by the
angiotensin converting enzyme1 and restricted the meta-
bolic events on the N-terminus. Initial enzyme inhibition
studies1 with the established aminopeptidase inhibitor
bestatin were able to fully block the amino-terminal
degradation pathway of Dyn A2-12, suggesting a unidi-
rectional degradation from Dyn A2-12 to Dyn A3-12 and
subsequently to Dyn A4-12. A comparison of the AUC
estimates of Dyn A3-12 obtained from metabolism of Dyn
A2-12 under captopril inhibtion with those obtained after
direct incubation of Dyn A3-12 contradicted this hypoth-
esis, as the AUC of Dyn A3-12 was smaller than expected
for a unidirectional degradation.1 Quite in agreement, a
simulation with the multicompartmental model using rate
constants determined from direct degradation of the in-
volved fragments (degradation rate constant under capto-
pril inhibition for Dyn A2-12, Dyn A3-12, Dyn A4-12
using a sequential metabolism from Dyn A2-12 to Dyn
A3-12 to Dyn A4-12) failed to describe the data ad-
equately (Figure 2A). Therefore the metabolic pathways
differed somewhat from the simple sequential metabolism
suggested by bestatin data.

AUC data would support this unidirectional model of
metabolic pathways only, if the rate constant of Dyn A3-
12 degradation (under captopril: k45 ) k4) was increased
by 10-fold from its initial estimate (obtained from direct
degradation of Dyn A3-12). Such an increase in the
metabolic rate of Dyn A3-12 could not be fully excluded if
the cleavage of Gly2-Gly3 of Dyn A2-12 would facilitate
the subsequent cleavage of Gly3-Phe4 of Dyn A3-12 by
the same enzyme (the generated Dyn A3-12 would not
have to enter the enzymatic pocket for further cleavage).
Such cases of “rate enhancement” have been reported in
the literature for other peptides.13 The reference AUC of

Figure 1sKinetic model describing the arrangement of metabolite pools in
the plasma metabolism of Dyn A 1−13. This model was the basis for
compartmental kinetic analysis of Dyn A1−13. Single digit abbreviations (e.g.,
k1) are used for degradation rate constants that describe the total outflow of
a certain compartment (in this example C1). Rate constants that describe the
specific flow from one compartment to another have double digit denominations
(e.g., k12) and represent the generation rate constants. The difference between
the overall degradation rate constant (e.g., k1) and relevant generation rate
constants (e.g., k16 and k12) reflect unknown metabolic events not incorporated
into the model. The area in dark gray highlights the metabolic events of Dyn
A2−12 under captopril inhibition, the added area in the medium gray shade
shows the extension of the model in the metabolic events of Dyn A1−12. The
dashed lines signify compartments for which direct data (from HPLC) was
not available.
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Dyn A3-12 for total conversion from Dyn A2-12 would
then be smaller than the AUC observed after direct
incubation of Dyn A3-12. For testing this hypothesis with
the compartmental model, the rate constant for converting
Dyn A3-12 into Dyn A4-12 by the relevant aminopepti-
dase was assumed to be larger in a series of metabolic
events than its estimate obtained from direct degradation

of Dyn A3-12. In our data set obtained under captopril
inhibition (no C-terminal enzymatic attack), all Dyn A2-
12 was then assumed to be converted into Dyn A3-12, and
in turn all Dyn A3-12 into Dyn A4-12. However, discrep-
ancies between fitted and observed estimates of Dyn A3-
12 or Dyn A4-12 concentration-time profiles were ob-
served in the relevant compartmental model (Figure 2B).

Figure 2s(A) Simulation of concentration−time profiles of Dyn A2−12 (2) and major metabolites (Dyn A3−12 [ and Dyn A4−12 ), r2 ) 0.216, MSC ) −2.781)
in human plasma at 37 °C under captopril inhibition using the model of sequential metabolism of Dyn A2−12 into Dyn A3−12 and Dyn A3−12 into Dyn A4−12
with previously obtained rate constants (rate constants under captopril inhibition taken from from Table 1. *k5 in the presence of captopril was calculated as k5

(0.17 min-1) minus rate constant associated with captopril sensitive pathway (0.07 min-1): 0.17−0.07 ) 0.10 min-1 (see Table 1), **k34 was based on bestatin
enzyme inhibition data (k34 + k35, see Table 1). (B) Least-squares fit of concentration−time profiles of Dyn A2−12 (2) and major metabolites (Dyn A3−12 ([)
and Dyn A4−12 ()), r2 ) 0.989, MSC ) 3.491) in human plasma at 37 °C under captopril inhibition using model of sequential metabolism of Dyn A2−12 into
Dyn A3−12 and increased rate constant k45. k34 and k5 were allowed to float freely (limits for deviation from initial estimates did not apply, see Materials and
Methods). (C) Least-squares fit of concentration−time profiles of Dyn A2−12 (2) and major metabolites (Dyn A3−12 ([) and Dyn A4−12 ()), r2 ) 0.988, MSC
) 5.244) in human plasma at 37 °C under captopril inhibition using the model of simultaneous metabolism of Dyn A2−12 via aminopeptidase and
dipeptidylaminopeptidase.

940 / Journal of Pharmaceutical Sciences
Vol. 88, No. 9, September 1999



These deviations between experimental and modeled con-
centration-time profile, detected by multicompartmental
kinetic analysis, showed the invalidity of the “rate en-
hanced” unidirectional model.

Finally, a model employing parallel pathways, conse-
quently contradicting the high selectivity of bestatin for
aminopeptidase, was investigated using simultaneous least-
squares fitting of Dyn A2-12 degradation under ACE
inhibition. Rate constants for parallel metabolic pathways
were allowed to vary within the limits outlined in the data
analysis section. This model adequately described the
experimental data (Figure 2C). Thus, the use of the
compartmental analysis, suggested the nonspecificity of
bestatin, a widely used aminopeptidase inhibitor, very
much in agreement with findings by Otero.14 The conse-
quent use of the more specific inhibitor leucinethiol in the
original publication1 triggered by the results of this fitting
procedure supported a smaller involvement of aminopep-
tidase in the N-terminal metabolism of Dyn A 2-12 (see
Table 2). In addition, the analysis suggested a direct
degradation of Dyn A2-12 into Dyn A4-12, a pathway
which was not revealed by enzyme inhibition studies alone,
but in agreement with results of the noncompartmental
analysis. These results already argue for one strength of
the compartmental approach, namely to incorporate infor-
mation on the concentration-time relationships in the
analysis of complex metabolic events.

Example 2: Detection of Assay Selectivity Prob-
lemssAnother advantage of simultaneous curve fitting
was revealed in the analysis of Dyn A1-12 data. The
degradation of Dyn A1-12 under ACE inhibition with
captopril using a similar, yet extended, metabolic model
described accurately the experimental data (data not
shown). Contrary to these results, the concentration-time
profile of Dyn A1-12 in naive plasma (no enzyme in-
hibition) showed a persistent underfit in the profile of Dyn

A4-12 in both visual assessment and the correlation
statistics on the data set of Dyn A4-12 (Figure 3A).

The hypothesis was that the poor fit might be attributed
to the small amounts of generated Dyn A1-10 which was
present in the Dyn A1-12 but not in the Dyn A2-12
incubations. Dyn A1-10 and Dyn A4-12 were known to
have very similar chromatographic retention profiles in the
applied chromatographic system1 and therefore probably
coelute. To investigate the possibility of this peak impurity
causing the observed underfit, the concentration-time
profile of Dyn A4-12, Dyn A1-10, and their cumulative
profile were simulated using the rate constant estimates
of k27, k7, k2, k35, k45, k5 from Table 1 (for explanation of
abbreviations, see Figure 1) obtained by separate degrada-
tion of the relevant dynorphin fragments with or without
enzyme inhibitors. The cumulative profile closely re-
sembled the observed data points (Figures 3B and 3C). A
fit of Dyn A1-12 degradation in naive plasma taking the
impurity into account resulted in a good description of the
observed data points (Figure 3C). Although the contribu-
tions of Dyn A1-10 to the overall AUC was minor (see
relevant degradation rate constants), it illustrates the
dependency of noncompartmental kinetic data on chro-
matographic resolution. Unfortunately, the likelihood of
chromatographic impurity increases with the number
analytes to be separated; as this was the case for the
degradation of Dyn A1-13 for which a total of 17 metabo-
lites were identified. Since all metabolic processes followed
apparent first-order kinetics, the multicompartmental
modeling approach was instrumental in detecting coelution
of chromatographic peaks which none of the other methods
would have been able to detect.

Example 3: Application of the Model to Data Sets
Describing Entire Degradation PathwayssThe above
sections showed several advantages of the simultaneous
curve fitting procedures in evaluating isolated events in
the analysis of complex metabolic systems. In the following
the ability to describe and analyze entire degradation
pathways is assessed. The applied method, presented so
far, incorporated degradation constants based on enzyme
inhibition studies into the compartmental analysis to
ensure valid initial estimates for the rate constants during
the curve fitting procedure. This ensured that the fitting
procedure stayed within limits imposed by direct degrada-
tion or valid enzyme inhibition experiments of parent drug
and metabolites. The same procedure applied to the entire
degradation pathway resulted in fits shown in Figure 4 and
rate constants observed under rigid limits in Table 3. The
agreement between experimentally found and predicted
values (Figure 4) strongly supports the validity of the
identified metabolic pathway (Figure 1). Table 2 compares
the results of the multicompartmental approach, noncom-
partmental method, and results of the enzyme inhibition
studies. Here, the rate constants of degradation or genera-
tion obtained from above fitting procedures of Dyn A2-

Table 1sRate Constants of Dynorphin Fragments in Plasma. Listed Is the Overall Rate Constant and the Contribution of Various Enzymatic
Systems to the Overall Rate Constanta

rate constant associated with blocked enzyme pathway (min-1)

peptide n overall rate constant (min-1) GEMSA bestatin leucinethiol captopril

Dyn A1−13 3 0.78 (k1) 0.61 (k12) 0.22 (k16) − N.T.
Dyn A1−12 3 0.38 (k2) N.T. 0.30 (k23) 0.28 (k23) 0.067 (k27)
Dyn A2−13 1 0.99 (k6) N.T. N.T. N.T. N.T.
Dyn A2−12 4 0.22 (k3) − 0.18 (k34 + k35) 0.08 (k34) 0.07 (k38)
Dyn A3−12 2 0.28 (k4) N.T. 0.23 (k45) − 0.043
Dyn A4−12 3 0.17 (k5) N.T. 0.13 0.09 0.07
Dyn A1−10 1 0.50 (k7)

a Calculated from ref 1 by transforming half-lives of Table 2 listed in ref 1 into the rate constants associated with the blocked enzyme (associated rate
constants of Figure 1 are given in parentheses). NT ) not tested; −: no effect.

Table 2sThe Formation of Metabolites from Their Parent Compound
As Calculated from Multicompartmental Fitting, Enzyme Inhibition
Experiments, and Noncompartmental (AUC-based) Analysisc

metabolite formation in % of
starting material as calculated by

peptide incubated fit inhibitor AUC fit inhibitor AUC

Dyn A1−12 Dyn A2−13
Dyn A1−13 79 82 78 10 0 (30a 15

Dyn A2−12 Dyn A1−10
Dyn A1−12 78 83 (85)a 78 20 19 b

Dyn A3−12 Dyn A4−12
Dyn A2−12 15 37 (80)a 17 39 28 42

a Based on leucinethiol data, bestatin data in brackets. b Coeluting with
Dyn A4−12. c Enzyme inhibition and noncompartmental data taken from
ref 1.
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12, Dyn A1-12, and Dyn A1-13 (Table 3) were used to
calculate the % of Dyn A 1-13, Dyn A 1-12, or Dyn A2-
12 entering a specific metabolite pool. A good agreement
between the compartmental curve fitting approach and the
other two methods1 suggests that one strength of the
structured multicompartmental approach is the ability to
test the correctness of metabolic pathways suggested by
other methods.

Removing the limits of the curve fitting procedure, while
retaining the initial estimates for the rate constants,
probed how well the compartmental model could stand on
its own. After least-squares optimization, the majority of
rate constants compared to the rate constants obtained
with imposed limits (Table 3). However, minor metabolites,
rate constants of metabolites for which no direct data were
available and/or fast degradation processes (Dyn A2-13
and Dyn A1-10, Table 3) deviated markedly. This suggests
that the unrestricted use of parameter estimates carries
the danger of “overfitting” the data (e.g., of minor metabo-
lites) to suit a certain model and the loss of identifiability.
Although the resulting fit is good, the predicted rate
constants are irrelevant, since they do not possess any
practical significance (Table 3) when compared with rate
constants obtained from enzyme inhibition studies. Another
attempt was made to perform the fitting procedure without

Figure 3s(A) Least-squares fit of concentration−time profiles of Dyn A1−12
(O) and major metabolites (Dyn A2−12 9, Dyn A3−12 [, and assumed Dyn
A4−12 (see Figure 3B for more information on “mixed peak”) ), r2 ) 0.996,
MSC ) 4.81) in human plasma at 37 °C based on the model of Figure 1. (B)
Simulation of concentration−time profiles of Dyn A4−12 (- - -) and Dyn A1−
10 (‚‚‚) after incubation of Dyn A1−12 with overlay of mixed peak ()).
Concentration−time profiles were simulated using unfitted initial estimates of
the relevant rate constants (Table 1) or estimates obtained in Figure 2C: k7

) 0.5 min-1, k27 ) 0.067 min-1, k23 ) 0.30 min-1, k34 ) 0.008 min-1, k4 )
0.28 min-1, k45 ) 0.239 min-1, k35 ) 0.078 (r2 ) 0.987, MSC ) 0.861). (C)
Least-squares fit of concentration−time profiles of Dyn A1−12 (O) and major
metabolites (Dyn A2−12 9, Dyn A3−12 [, and mixed Dyn A4−12 and Dyn
A1−10 ), r2 ) 0.998, MSC ) 5.213) in human plasma at 37 °C based on
the model of Figure 1, accounting for coelution of Dyn A4−12 and Dyn
A1−10.

Figure 4sLeast-squares fit of concentration−time profiles of Dyn A1−13 (b)
and major metabolites (Dyn A1−12 O, Dyn A2−13 0, Dyn A2−12 9, Dyn
A3−12 9, and coeluting Dyn A4−12 and Dyn A1−10 ), r2 ) 0.995, MSC )
4.485) in human plasma at 37 oC accounting for coelution of Dyn A4−12 and
Dyn A1−10.

Table 3sInitial Concentration and Rate Constants (min-1) of Dyn
A1−13 and Metabolic Fragments in Plasma Fitted to the Model
Depicted in Figure 1a

parameter rigid limits* free-floating parameters**

degradation of A1−13 (k1) 0.901 ± 0.013 0.892
generation of A2−13 (k16) 0.091 ± 0.043 0.015
generation of A1−12 (k12) 0.713 ± 0.082 0.702
degradation of A1−12 (k2) 0.299 ± 0.002 0.384
generation of A2−12 (k63) 0.792 ± 0.001 80.9
generation of A1−10 (k27) 0.059 ± 0.001 2.2 × 10217

degradation of A1−10 (k7) 0.502 ± 0.004 2.1 × 1053

degradation of A2−13 (k6) 1.007 ± 0.014 0.178
generation of A2−12 (k23) 0.232 ± 0.001 0.266
degradation of A2−12 (k3) 0.220 ± 0.004 0.197
generation of A3−12 (k34) 0.032 ± 0.001 0.119
generation of A4−12 (k35) 0.077 ± 0.001 0.227
degradation of A3−12 (k4) 0.278 ± 0.003 0.536
generation of A4−12 (k45) 0.210 ± 0.002 2.53 × 10-16

degradation of A4−12 (k5) 0.170 ± 0.004 0.313

a Parameters were kept in rigid limits as outlined in the data analysis section
or allowed to vary freely (”float”) between zero and infinity. *n ) 6, **n ) 1.
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good initial estimates for the rate constants (setting all to
0.5 or 1) and without limits. Under these circumstances
the data for Dyn A1-13 and its metabolites could not be
fitted to the model outlined in Figure 1 (data not shown).
More detailed evaluation of the fits described in Figure 4
by local sensitivity analysis identified k12 (linked to k1), k63,
and k23 as the most sensitive rate constants, while k16, k27,
k34, k35 represent overall the least sensitive (see Appendix
2 for a more detailed description of the method and Table
4 for a representation of the results of the analysis). Thus,
the sensitivity analysis confirmed the presence of general
identifiability problems, similar to those indicated by
comparing results of rigid and free-floating parameter
estimations. The sensitivity analysis reemphasized that the
isolated use of such complex models is not feasible.
However, the use of experimentally derived estimates of
rate constants (e.g., obtained from incubations of synthe-
sized metabolites in the presence or absence of enzyme
inhibitors, see Materials and Methods for more detail) in
the model is very helpful in probing for the acceptability
of a metabolic scheme proposed by the other methods.
Thus, structured multicompartmental modeling approaches
will be useful in the evaluation of complex peptide degra-
dation pathways when used hand in hand with alternative
forms of analysis, such as enzyme inhibition studies and
noncompartmental analytical approaches.

In conclusion, the presented apparent first-order multi-
compartmental approach has several advantages. It is
relatively rapid and focuses only on the metabolically
relevant processes. The presented model can be extended
to include Michaelis-Menten kinetics when necessary.
However, such an extension would add several parameters
which have to based on further experiments and should
only be applied when necessary (i.e., the half-life changes
in the experimental concentration range). The application
of the compartmental approach in the evaluation of the
metabolic fate of Dyn A1-13 and related fragments helped
to identify a lack of chromatographic resolution and a low
selectivity of one of the enzyme inhibitors employed in the
study. It further was able to support the correctness of the
proposed metabolic pathways.

Peptide metabolism has been generally evaluated by
biochemists with the help of enzyme inhibition studies. The
application of pharmacokinetic tools such as noncompart-
mental approaches have been recently incorporated into
such investigations.1 The results presented in this study
suggest distinct advantages of the compartmental analysis
for evaluating complex metabolic events. Because of the
inherent possible pitfalls of all three methods, the combined
use of all approaches might be best suited to assess complex
metabolic degradation patterns of peptides in a detailed
fashion.

Appendix 1
Equations Employed for the Simultaneous Fitting

of Dyn A1-13 and Its Main Metabolites According
to Figure 1sFor Dyn A1-13: C1 ) C0 exp((-k1)t)

For Dyn A1-12: C2 ) k12C0/(k1 - k2)(exp((-k2)t) - exp-
((-k1)t))

For Dyn A2-13: C6 ) k16C0/(k1 - k6)(exp((-k6)t) - exp-
((-k1)t))

For Dyn A2-12: C3 ) k12k23C0/((k2 - k3)(k1 - k3))exp-
((-k3)t) + k12k23C0/((k3 - k2)(k1 - k2))exp((-k2)t) + k12k23-
C0/((k3 - k1)(k2 - k1))exp((-k1)t) + k16k63C0/((k6 - k3)(k1 -
k3))exp((-k3)t) + k16k63C0/((k3 - k6)(k1 - k6))exp((-k6)t) +
k16k63C0/((k3 - k1)(k6 - k1))exp((-k1)t)

For Dyn A3-12: C4 ) k12k23k34C0/((k3 - k4)(k2 - k4)(k1
- k4))exp((-k4)t) + k12k23k34C0/((k4 - k3)(k2 - k3)(k1 - k3))-
exp((-k3)t) + k12k23k34C0/((k4 - k2)(k3 - k2)(k1 - k2))exp-
((-k2)t) + k12k23k34C0/((k4 - k1)(k3 - k1)(k2 - k1))exp((-
k1)t) + k16k63k34C0/((k3 - k4)(k6 - k4)(k1 - k4))exp((-k4)t)
+ k16k63k34C0/((k4 - k3)(k6 - k3)(k1 - k3))exp((-k3)t) +
k16k63k34C0/((k4 - k6)(k3 - k6)(k1 - k6))exp((-k6)t) + k16k63k34-
C0/((k4 - k1)(k3 - k1)(k6 - k1))exp((-k1)t)

For Coeluting Dyn A4-12 (C5) and Dyn A1-10 (C7): C5
) k12k23k35C0/((k3 - k5)(k2 - k5)(k1 - k5))exp((-k5)t) +
k12k23k35C0/((k5 - k3)(k2 - k3)(k1 - k3))exp((-k3)t) + k12k23k35-
C0/((k5 - k2)(k3 - k2)(k1 - k2))exp((-k2)t) + k12k23k35C0/
((k5 - k1)(k3 - k1)(k2 - k1))exp((-k1)t) + k16k63k35C0/((k3 -
k5)(k6 - k5)(k1 - k5))exp((-k5)t) + k16k63k35C0/((k5 - k3)(k6
- k3)(k1 - k3))exp((-k3)t) + k16k63k35C0/((k5 - k6)(k3 - k6)-
(k1 - k6))exp((-k6)t) + k16k63k35C0/((k5 - k1)(k3 - k1)(k6 -
k1))exp((-k1)t) + k12k23k34k45C0/((k4 - k5)(k3 - k5)(k2 - k5)-
(k1 - k5))exp((-k5)t) + k12k23k34k45C0/((k5 - k4)(k3 - k4)(k2
- k4)(k1 - k4))exp((-k4)t) + k12k23k34k45C0/((k5 - k3)(k4 -
k3)(k2 - k3)(k1 - k3))exp((-k3)t) + k12k23k34k45C0/((k5 - k2)-
(k4 - k2)(k3 - k2)(k1 - k2))exp((-k2)t) + k12k23k34k45C0/((k5
- k1)(k4 - k1)(k3 - k1)(k2 - k1))exp((-k1)t) + k16k63k34k45-
C0/((k4 - k5)(k3 - k5)(k6 - k5)(k1 - k5))exp((-k5)t) +
k16k63k34k45C0/((k5 - k4)(k3 - k4)(k6 - k4)(k1 - k4))exp((-
k4)t) + k16k63k34k45C0/((k5 - k3)(k4 - k3)(k6 - k3)(k1 - k3))-
exp((-k3)t) + k16k63k34k45C0/((k5 - k6)(k4 - k6)(k3 - k6)(k1
- k6))exp((-k6)t) + k16k63k34k45C0/((k5 - k1)(k4 - k1)(k3 -
k1)(k6 - k1))exp((-k1)t)

C7 ) k12k27C0/((k2 - k7)(k1 - k7))exp((-k7)t) + k12k27C0/
((k7 - k2)(k1 - k2))exp((-k2)t) + k12k27C0/((k7 - k1)(k2 - k1))-
exp((-k1)t)

Appendix 2

Calculation of Sensitivity CoefficientssA local sen-
sitivity analysis was carried out for each Dyn along with
some summary measures, e.g., see Rabitz for a detailed
description.9 The normalized sensitivity coefficient (SC)
detailed in Bieniasz and Speiser was calculated for each
Dyn i as10

where i, i ) 1, 2, 7, the rate constant j corresponds to the
set j ) {12, 16, 23, 27, 34, 35, 45, 5, 63, 7}, and the
equations for the Ci’s are given in Appendix 1. The values
for the kj are given in Table 3. Furthermore, the SC for C5
and C7 was calculated jointly, since C5 and C7 were
considered additive, i.e., the joint SC was given by SC5,j +
SC7,j. The rate constants k1, k2, k3, k4, k6 were linked to the
other rate constants through the equations k1 ) k16 + k12
+ k1u or k2 ) k23 + k27 + k2u or k3 ) k34 + k35 + k3u or k4 )
k45 + k4u or k6 ) k63 + k6u, where k1u, k2u, k3u, k4u, k6u
represents degradation of specific metabolites not included
in known metabolic pathways. The absolute magnitude of
the SC's were summarized across time as

Table 4sResults of Local Sensitivity Analysis

k12 k16 k23 k27 k34 k35 k45 k5 k63 k7

Cl 11.0 1.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
C2 0.26 0.12 3.27 0.83 0.00 0.00 0.00 0.00 0.00 0.00
C3 2.82 0.78 0.82 0.28 0.34 0.81 0.00 0.00 3.95 0.00
C4 0.22 0.11 0.59 0.21 0.79 0.51 0.90 0.00 0.07 0.00
C6 7.79 0.87 0.00 0.00 0.00 0.00 0.00 0.00 3.57 0.00
C5 C7 1.21 0.33 2.88 0.76 0.18 0.62 0.00 1.32 0.44 1.43
overall 3.88 0.60 1.89 0.52 0.44 0.65 0.90 1.32 2.65 1.43

SCij(t) )
∂ ln Ci(t)
∂ ln kj

|kj)k/
j

(1.1)
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where t1 ) 1, t2 ) 2, t3 ) 5, t4 ) 10, t5 ) 20, t6 ) 30, and t7
) 40. The results are given in the body of Table 4. The
values were then averaged for each rate constant in order
to provide a global measure of sensitivity across time. To
calculate the overall mean sensitivity, we did not average
in the values of ASCi,j ) 0.
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